※上記の広告は60日以上更新のないWIKIに表示されています。更新することで広告が下部へ移動します。


この項の問題点

この項は未完成であり重大な間違いを含んでいる可能性があります。(2009-08-09)

概要

naive Bayes modelはクラスが与えられた時、各attributeが条件付独立となるモデルです。(naiveがかかるのはmodelであってBayesではありません。念のため。)
cattrの同時確率は以下の式で表されます。


\begin{eqnarray}
p(C=c,Attr=attr) &=& p(C=c, Attr_1=attr_1 , \ldots , Attr_J=attr_J) \\
&=& p(C=c) \prod^{J}_{j=1} p(Attr_j=attr_j \mid C=c) \\
\end{eqnarray}

以下はBayesian networkでの表現です。

EMアルゴリズムによるパラメータ推定



\begin{eqnarray}
p(X=k , {\bf Y}={\bf y} \mid \theta) &=& p(X=k \mid \theta) p({\bf Y}={\bf y} \mid X=k , \theta) \\
&=& p(X=k \mid \theta) \prod_{j=1}^{J} p(Y_j=y_j \mid X=k , \theta)
\end{eqnarray}

EMアルゴリズムのQ(\theta' \mid \theta)は以下の形。

\begin{eqnarray}
Q(\theta' \mid \theta) &=& \sum_{t=1}^{T} \sum_{k=1}^{K} p(k \mid {\bf y}_t , \theta) \log p(k, {\bf y}_t \mid \theta')  \\
&=& \sum_{t=1}^{T} \sum_{k=1}^{K} p(k \mid {\bf y}_t , \theta) \left( \log p(k | \theta') + \sum_{j=1}^{J} \log p(y_{t,j} \mid k , \theta') \right) \\
&=& \sum_{t=1}^{T} \sum_{k=1}^{K} p(k \mid {\bf y}_t , \theta) \log p(k \mid \theta') + \sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{k=1}^{K} p(k \mid {\bf y}_t , \theta) \log p(y_{t,j} \mid k , \theta') 
\end{eqnarray}

p(k \mid \theta)はcategorical distributionにしたがうとします。
つまりp(k \mid \theta) = \pi_kと表し、\sum_{k=1}^{K}\pi_k = \sum_{k=1}^{K}p(k \mid \theta) = 1を満たします。
mixture modelの時と同様に更新式は以下の形になります。

\begin{eqnarray}
&& {\pi'}_k \propto \sum_{t=1}^{T} p(k \mid {\bf y}_t , \theta)
\end{eqnarray}

あるjにおいてp(y_j \mid k , \theta)がcategorical distributionにしたがう場合を考えます。
p(y_j = m \mid k , \theta) = \phi_{k,m}と表し、\sum_{m=1}^{M}\phi_{k,m} = \sum_{m=1}^{M}p(y_j = m \mid k , \theta) = 1を満たします。
p(k \mid \theta)と同様に更新式は以下の形になります。
ただし\delta(y_{t,j} = m)y_{t,j} = mを満たす時1を、それ以外は0をとるとします。

\begin{eqnarray}
&& {\phi'}_{k,m} \propto \sum_{t=1}^{T} p(k \mid {\bf y}_t , \theta) \delta(y_{t,j} = m)
\end{eqnarray}

あるjにおいてp(y_j \mid k , \theta)が多次元正規分布(multivariate normal distribution)にしたがう場合を考えます。

\begin{eqnarray}
&& p(y_j \mid k , \theta) = {\cal N}(y_j \mid \mu_{j,k} , \Sigma_{j,k}) = \frac{1}{(2\pi)^{D/2} \mid \Sigma_{j,k} \mid ^{1/2}} \exp \left(- \frac{1}{2} (y_j-\mu_{j,k})^{\rm T} \Sigma_{j,k}^{-1} (y_j-\mu_{j,k}) \right)
\end{eqnarray}

これもmixture modelの時と同様です。

\begin{eqnarray}
{\mu'}_{j,k} = \frac{\sum_{t=1}^{T} p(k \mid {\bf y}_t , \theta) y_{t,j}}{\sum_{t=1}^{T} p(k \mid {\bf y}_t , \theta)}
\end{eqnarray}


\begin{eqnarray}
{\Sigma'}_{j,k} = \frac{\sum_{t=1}^{T} p(k \mid {\bf y}_t , \theta)(y_t-{\mu'}_{j,k}) (y_{t,j}-{\mu'}_{j,k})^{\rm T}}{\sum_{t=1}^{T} p(k \mid {\bf y}_t , \theta)}
\end{eqnarray}


|
添付ファイル